58 research outputs found

    Homogeneous TIP4P/2005 ice nucleation at low supercooling

    Full text link
    We present a partial free energy profile for the homogeneous nucleation of ice using an all-atom model of water at low supercooling, at which ice growth dynamics are reasonably accessible to simulation. We demonstrate that the free energy profile is well described by classical nucleation theory, and that the nucleation barrier is entropic in origin. We also estimate to first order the temperature dependence of the interfacial free energy

    Effects of surface interactions on heterogeneous ice nucleation for a monatomic water model

    Full text link
    Despite its importance in atmospheric science, much remains unknown about the microscopic mechanism of heterogeneous ice nucleation. In this work, we perform hybrid Monte Carlo simulations of the heterogeneous nucleation of ice on a range of generic surfaces, both flat and structured, in order to probe the underlying factors affecting the nucleation process. The structured surfaces we study comprise one basal plane bilayer of ice with varying lattice parameters and interaction strengths. We show that what determines the propensity for nucleation is not just the surface attraction, but also the orientational ordering imposed on liquid water near a surface. In particular, varying the ratio of the surface's attraction and orientational ordering can change the mechanism by which nucleation occurs: ice can nucleate on the structured surface even when the orientational ordering imposed by the surface is weak, as the water molecules that interact strongly with the surface are themselves a good template for further growth. We also show that lattice matching is important for heterogeneous nucleation on the structured surface we study. We rationalise these brute-force simulation results by explicitly calculating the interfacial free energies of ice and liquid water in contact with the nucleating surface and their variation with surface interaction parameters

    DNA brick self-assembly with an off-lattice potential.

    Get PDF
    We report Monte Carlo simulations of a simple off-lattice patchy-particle model for DNA 'bricks'. We relate the parameters that characterise this model with the binding free energy of pairs of single-stranded DNA molecules. We verify that an off-lattice potential parameterised in this way reproduces much of the behaviour seen with a simpler lattice model we introduced previously, although the relaxation of the geometric constraints leads to a more error-prone self-assembly pathway. We investigate the self-assembly process as a function of the strength of the non-specific interactions. We show that our off-lattice model for DNA bricks results in robust self-assembly into a variety of target structures.This work was supported by the Engineering and Physical Sciences Research Council [Programme Grant EP/I001352/1]. Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704.This is the final version of the article. It first appeared from the Royal Society of Chemistry via https://doi.org/10.1039/C6SM01031

    Self-assembly of two-dimensional binary quasicrystals: A possible route to a DNA quasicrystal

    Full text link
    We use Monte Carlo simulations and free-energy techniques to show that binary solutions of penta- and hexavalent two-dimensional patchy particles can form thermodynamically stable quasicrystals even at very narrow patch widths, provided their patch interactions are chosen in an appropriate way. Such patchy particles can be thought of as a coarse-grained representation of DNA multi-arm `star' motifs, which can be chosen to bond with one another very specifically by tuning the DNA sequences of the protruding arms. We explore several possible design strategies and conclude that DNA star tiles that are designed to interact with one another in a specific but not overly constrained way could potentially be used to construct soft quasicrystals in experiment. We verify that such star tiles can form stable dodecagonal motifs using oxDNA, a realistic coarse-grained model of DNA

    Rational design of self-assembly pathways for complex multicomponent structures.

    Get PDF
    The field of complex self-assembly is moving toward the design of multiparticle structures consisting of thousands of distinct building blocks. To exploit the potential benefits of structures with such "addressable complexity," we need to understand the factors that optimize the yield and the kinetics of self-assembly. Here we use a simple theoretical method to explain the key features responsible for the unexpected success of DNA-brick experiments, which are currently the only demonstration of reliable self-assembly with such a large number of components. Simulations confirm that our theory accurately predicts the narrow temperature window in which error-free assembly can occur. Even more strikingly, our theory predicts that correct assembly of the complete structure may require a time-dependent experimental protocol. Furthermore, we predict that low coordination numbers result in nonclassical nucleation behavior, which we find to be essential for achieving optimal nucleation kinetics under mild growth conditions. We also show that, rather surprisingly, the use of heterogeneous bond energies improves the nucleation kinetics and in fact appears to be necessary for assembling certain intricate 3D structures. This observation makes it possible to sculpt nucleation pathways by tuning the distribution of interaction strengths. These insights not only suggest how to improve the design of structures based on DNA bricks, but also point the way toward the creation of a much wider class of chemical or colloidal structures with addressable complexity.This work was carried out with support from the Eu- ropean Research Council (Advanced Grant 227758) and the Engineering and Physical Sciences Research Council Programme Grant EP/I001352/1. W.M.J. acknowledges support from the Gates Cambridge Trust and the Na- tional Science Foundation Graduate Research Fellowship under Grant No. DGE-1143678.This is the author accepted manuscript. The final version is available from PNAS at http://www.pnas.org/content/112/20/6313.abstract

    A streamlined molecular-dynamics workflow for computing solubilities of molecular and ionic crystals

    Full text link
    Computing the solubility of crystals in a solvent using atomistic simulations is notoriously challenging due to the complexities and convergence issues associated with free-energy methods, as well as the slow equilibration in direct-coexistence simulations. This paper introduces a molecular-dynamics workflow that simplifies and robustly computes the solubility of molecular or ionic crystals. This method is considerably more straightforward than the state-of-the-art, as we have streamlined and optimised each step of the process. Specifically, we calculate the chemical potential of the crystal using the gas-phase molecule as a reference state, and employ the S0 method to determine the concentration dependence of the chemical potential of the solute. We use this workflow to predict the solubilities of sodium chloride in water, urea polymorphs in water, and paracetamol polymorphs in both water and ethanol. Our findings indicate that the predicted solubility is sensitive to the chosen potential energy surface. Furthermore, we note that the harmonic approximation often fails for both molecular crystals and gas molecules at or above room temperature, and that the assumption of an ideal solution becomes less valid for highly soluble substances

    Quantum-mechanical exploration of the phase diagram of water

    Get PDF
    Funder: CSCS Swiss National Supercomuputing Centre (project s957)Abstract: The set of known stable phases of water may not be complete, and some of the phase boundaries between them are fuzzy. Starting from liquid water and a comprehensive set of 50 ice structures, we compute the phase diagram at three hybrid density-functional-theory levels of approximation, accounting for thermal and nuclear fluctuations as well as proton disorder. Such calculations are only made tractable because we combine machine-learning methods and advanced free-energy techniques. The computed phase diagram is in qualitative agreement with experiment, particularly at pressures ≲ 8000 bar, and the discrepancy in chemical potential is comparable with the subtle uncertainties introduced by proton disorder and the spread between the three hybrid functionals. None of the hypothetical ice phases considered is thermodynamically stable in our calculations, suggesting the completeness of the experimental water phase diagram in the region considered. Our work demonstrates the feasibility of predicting the phase diagram of a polymorphic system from first principles and provides a thermodynamic way of testing the limits of quantum-mechanical calculations
    • …
    corecore